Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}+2x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{0^{4}}{4}+0^{2}-\left(\frac{\left(-1\right)^{4}}{4}+\left(-1\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{5}{4}
Simplify.