Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2-3x-\frac{x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\mathrm{d}x+\int -3x\mathrm{d}x+\int -\frac{x^{2}}{2}\mathrm{d}x
Integrate the sum term by term.
\int 2\mathrm{d}x-3\int x\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
2x-3\int x\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x-\frac{3x^{2}}{2}-\frac{\int x^{2}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
2x-\frac{3x^{2}}{2}-\frac{x^{3}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -\frac{1}{2} times \frac{x^{3}}{3}.
2\times 0-\frac{3}{2}\times 0^{2}-\frac{0^{3}}{6}-\left(2\left(-1\right)-\frac{3}{2}\left(-1\right)^{2}-\frac{\left(-1\right)^{3}}{6}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{10}{3}
Simplify.