Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -\frac{x^{2}}{2}+1-2^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{x^{2}}{2}\mathrm{d}x+\int 1\mathrm{d}x+\int -2^{x}\mathrm{d}x
Integrate the sum term by term.
-\frac{\int x^{2}\mathrm{d}x}{2}+\int 1\mathrm{d}x-\int 2^{x}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{6}+\int 1\mathrm{d}x-\int 2^{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -\frac{1}{2} times \frac{x^{3}}{3}.
-\frac{x^{3}}{6}+x-\int 2^{x}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{x^{3}}{6}+x-\frac{2^{x}}{\ln(2)}
Use \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)} from the table of common integrals to obtain the result.
-\frac{0^{3}}{6}+0-2^{0}\ln(2)^{-1}-\left(-\frac{\left(-1\right)^{3}}{6}-1-2^{-1}\ln(2)^{-1}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1}{2\ln(2)}+\frac{5}{6}
Simplify.