Evaluate
-\frac{146541311677}{1500}\approx -97694207.784666667
Share
Copied to clipboard
\int _{-0.15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
To find the opposite of -1+\frac{1}{2}x, find the opposite of each term.
\int _{-0.15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
Combine 2x and -\frac{1}{2}x to get \frac{3}{2}x.
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply \frac{3}{2} times \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{\left(-0.15\right)^{3}}{3}+\frac{3}{4}\left(-0.15\right)^{2}-0.15\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{146541311677}{1500}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}