Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -4x+4+x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -4x\mathrm{d}x+\int 4\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
-4\int x\mathrm{d}x+\int 4\mathrm{d}x+\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-2x^{2}+\int 4\mathrm{d}x+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
-2x^{2}+4x+\int x^{2}\mathrm{d}x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
-2x^{2}+4x+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-2\times 2^{2}+4\times 2+\frac{2^{3}}{3}-\left(-2\left(-\pi \right)^{2}+4\left(-1\right)\pi +\frac{1}{3}\left(-\pi \right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{8}{3}+2\pi ^{2}+4\pi +\frac{\pi ^{3}}{3}
Simplify.