Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Share

\int _{-\frac{n}{2}}^{\frac{1}{2}}x^{2}yx\mathrm{d}x
Cancel out 2 and 2.
\int _{-\frac{n}{2}}^{\frac{1}{2}}x^{3}y\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int x^{3}y\mathrm{d}x
Evaluate the indefinite integral first.
y\int x^{3}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
y\times \frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{yx^{4}}{4}
Simplify.
\frac{1}{4}y\times \left(\frac{1}{2}\right)^{4}-\frac{1}{4}y\left(-\frac{1}{2}n\right)^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{y-yn^{4}}{64}
Simplify.