Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{-x+3}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{x}{2}\mathrm{d}x+\int \frac{3}{2}\mathrm{d}x
Integrate the sum term by term.
-\frac{\int x\mathrm{d}x}{2}+\int \frac{3}{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{2}}{4}+\int \frac{3}{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{1}{2} times \frac{x^{2}}{2}.
-\frac{x^{2}}{4}+\frac{3x}{2}
Find the integral of \frac{3}{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{1^{2}}{4}+\frac{3}{2}\times 1-\left(-\frac{\left(-\frac{3}{2}\right)^{2}}{4}+\frac{3}{2}\left(-\frac{3}{2}\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65}{16}
Simplify.