Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -m+8m^{3}-8m^{5}\mathrm{d}m
Evaluate the indefinite integral first.
\int -m\mathrm{d}m+\int 8m^{3}\mathrm{d}m+\int -8m^{5}\mathrm{d}m
Integrate the sum term by term.
-\int m\mathrm{d}m+8\int m^{3}\mathrm{d}m-8\int m^{5}\mathrm{d}m
Factor out the constant in each of the terms.
-\frac{m^{2}}{2}+8\int m^{3}\mathrm{d}m-8\int m^{5}\mathrm{d}m
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m\mathrm{d}m with \frac{m^{2}}{2}. Multiply -1 times \frac{m^{2}}{2}.
-\frac{m^{2}}{2}+2m^{4}-8\int m^{5}\mathrm{d}m
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m^{3}\mathrm{d}m with \frac{m^{4}}{4}. Multiply 8 times \frac{m^{4}}{4}.
-\frac{m^{2}}{2}+2m^{4}-\frac{4m^{6}}{3}
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m^{5}\mathrm{d}m with \frac{m^{6}}{6}. Multiply -8 times \frac{m^{6}}{6}.
-\frac{1}{2}\times \left(2^{\frac{1}{2}}\right)^{2}+2\times \left(2^{\frac{1}{2}}\right)^{4}-\frac{4}{3}\times \left(2^{\frac{1}{2}}\right)^{6}-\left(-\frac{1}{2}\left(-\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{2}+2\left(-\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{4}-\frac{4}{3}\left(-\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{6}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{15}{4}
Simplify.