Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. H
Tick mark Image

Similar Problems from Web Search

Share

\int H\cos(x)\mathrm{d}x
Evaluate the indefinite integral first.
H\int \cos(x)\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
H\sin(x)
Use \int \cos(H)\mathrm{d}H=\sin(H) from the table of common integrals to obtain the result.
H\sin(\frac{1}{2}\pi )-H\sin(-\frac{1}{2}\pi )
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2H
Simplify.