Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. g
Tick mark Image

Similar Problems from Web Search

Share

\int 2g^{2}+\sin(y)\mathrm{d}y
Evaluate the indefinite integral first.
\int 2g^{2}\mathrm{d}y+\int \sin(y)\mathrm{d}y
Integrate the sum term by term.
2\int g^{2}\mathrm{d}y+\int \sin(y)\mathrm{d}y
Factor out the constant in each of the terms.
2g^{2}y+\int \sin(y)\mathrm{d}y
Find the integral of g^{2} using the table of common integrals rule \int a\mathrm{d}y=ay.
2g^{2}y-\cos(y)
Use \int \sin(g)\mathrm{d}g=-\cos(g) from the table of common integrals to obtain the result.
\frac{1}{2}\times 2g^{2}\pi -\cos(\frac{1}{2}\pi )-\left(-\frac{1}{2}\times 2g^{2}\pi -\cos(-\frac{1}{2}\pi )\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2g^{2}\pi
Simplify.