\int _ { \text { Scanneld } } ^ { 3 } ( x ^ { 2 } + x ) d x
Evaluate
\frac{-n^{4}\left(2eSacdln^{2}+3\right)\left(eSacdl\right)^{2}+81}{6}
Differentiate w.r.t. S
Sn^{4}\left(-eSacdln^{2}-1\right)\left(eacdl\right)^{2}
Share
Copied to clipboard
\int x^{2}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{3^{3}}{3}+\frac{3^{2}}{2}-\left(\frac{1}{3}\left(Scanneld\right)^{3}+\frac{1}{2}\left(Scanneld\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{27}{2}-\frac{a^{2}e^{2}\left(2Scean^{2}ld+3\right)S^{2}c^{2}n^{4}l^{2}d^{2}}{6}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}