Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+y^{2}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int y^{2}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+\int y^{2}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+\int y^{2}\mathrm{d}x-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+y^{2}x-\int x\mathrm{d}x
Find the integral of y^{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+y^{2}x-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{y^{3}}{3}+y^{2}y-\frac{y^{2}}{2}-\left(\frac{1}{3}\times \left(\frac{1}{2}y\right)^{3}+y^{2}\times \frac{1}{2}y-\frac{1}{2}\times \left(\frac{1}{2}y\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\left(-9+19y\right)y^{2}}{24}
Simplify.