Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2\cos(x)-5\sin(x)\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\cos(x)\mathrm{d}x+\int -5\sin(x)\mathrm{d}x
Integrate the sum term by term.
2\int \cos(x)\mathrm{d}x-5\int \sin(x)\mathrm{d}x
Factor out the constant in each of the terms.
2\sin(x)-5\int \sin(x)\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
2\sin(x)+5\cos(x)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply -5 times -\cos(x).
2\sin(3)+5\cos(3)-\left(2\sin(\frac{1}{6}\pi )+5\cos(\frac{1}{6}\pi )\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2\sin(3)+5\cos(3)-1-\frac{5\sqrt{3}}{2}
Simplify.