Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 8\left(\sqrt[3]{x}-\sqrt[3]{x^{2}}\right)+16x\mathrm{d}x
Use the distributive property to multiply 8 by \sqrt[3]{x}-\sqrt[3]{x^{2}}+2x.
\int 8\sqrt[3]{x}-8\sqrt[3]{x^{2}}+16x\mathrm{d}x
Use the distributive property to multiply 8 by \sqrt[3]{x}-\sqrt[3]{x^{2}}.
\int 8\sqrt[3]{x}\mathrm{d}x+\int -8x^{\frac{2}{3}}\mathrm{d}x+\int 16x\mathrm{d}x
Integrate the sum term by term.
8\int \sqrt[3]{x}\mathrm{d}x-8\int x^{\frac{2}{3}}\mathrm{d}x+16\int x\mathrm{d}x
Factor out the constant in each of the terms.
6x^{\frac{4}{3}}-8\int x^{\frac{2}{3}}\mathrm{d}x+16\int x\mathrm{d}x
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply 8 times \frac{3x^{\frac{4}{3}}}{4}.
6x^{\frac{4}{3}}-\frac{24x^{\frac{5}{3}}}{5}+16\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{2}{3}}\mathrm{d}x with \frac{3x^{\frac{5}{3}}}{5}. Multiply -8 times \frac{3x^{\frac{5}{3}}}{5}.
6x^{\frac{4}{3}}-\frac{24x^{\frac{5}{3}}}{5}+8x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 16 times \frac{x^{2}}{2}.
6x^{\frac{4}{3}}-\frac{24x^{\frac{5}{3}}}{5}+8x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.