Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 6x^{2}\mathrm{d}x+\int -\frac{4}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x-4\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}-4\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}+\frac{2}{x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}. Multiply -4 times -\frac{1}{2x^{2}}.
2x^{3}+\frac{2}{x^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.