Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. u
Tick mark Image

Similar Problems from Web Search

Share

4\int \sqrt{u}\mathrm{d}u
Factor out the constant using \int af\left(u\right)\mathrm{d}u=a\int f\left(u\right)\mathrm{d}u.
\frac{8u^{\frac{3}{2}}}{3}
Rewrite \sqrt{u} as u^{\frac{1}{2}}. Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{\frac{1}{2}}\mathrm{d}u with \frac{u^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{8u^{\frac{3}{2}}}{3}+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.