Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 3^{x}\mathrm{d}x+\int -4\times 3^{x}\mathrm{d}x
Integrate the sum term by term.
\int 3^{x}\mathrm{d}x-4\int 3^{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3^{x}}{\ln(3)}-4\int 3^{x}\mathrm{d}x
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
\frac{3^{x}}{\ln(3)}-4\times \frac{3^{x}}{\ln(3)}
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
-\frac{3\times 3^{x}}{\ln(3)}
Simplify.
-\frac{3\times 3^{x}}{\ln(3)}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.