Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x\left(8x^{3}-36x^{2}+54x-27\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-3\right)^{3}.
\int 16x^{4}-72x^{3}+108x^{2}-54x\mathrm{d}x
Use the distributive property to multiply 2x by 8x^{3}-36x^{2}+54x-27.
\int 16x^{4}\mathrm{d}x+\int -72x^{3}\mathrm{d}x+\int 108x^{2}\mathrm{d}x+\int -54x\mathrm{d}x
Integrate the sum term by term.
16\int x^{4}\mathrm{d}x-72\int x^{3}\mathrm{d}x+108\int x^{2}\mathrm{d}x-54\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{16x^{5}}{5}-72\int x^{3}\mathrm{d}x+108\int x^{2}\mathrm{d}x-54\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 16 times \frac{x^{5}}{5}.
\frac{16x^{5}}{5}-18x^{4}+108\int x^{2}\mathrm{d}x-54\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -72 times \frac{x^{4}}{4}.
\frac{16x^{5}}{5}-18x^{4}+36x^{3}-54\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 108 times \frac{x^{3}}{3}.
\frac{16x^{5}}{5}-18x^{4}+36x^{3}-27x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -54 times \frac{x^{2}}{2}.
\frac{16x^{5}}{5}-18x^{4}+36x^{3}-27x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.