Evaluate
\frac{u^{4}}{2}+u^{2}+С
Differentiate w.r.t. u
2u\left(u^{2}+1\right)
Share
Copied to clipboard
\int 2u^{3}+2u\mathrm{d}u
Use the distributive property to multiply 2u by u^{2}+1.
\int 2u^{3}\mathrm{d}u+\int 2u\mathrm{d}u
Integrate the sum term by term.
2\int u^{3}\mathrm{d}u+2\int u\mathrm{d}u
Factor out the constant in each of the terms.
\frac{u^{4}}{2}+2\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{3}\mathrm{d}u with \frac{u^{4}}{4}. Multiply 2 times \frac{u^{4}}{4}.
\frac{u^{4}}{2}+u^{2}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u\mathrm{d}u with \frac{u^{2}}{2}. Multiply 2 times \frac{u^{2}}{2}.
\frac{u^{4}}{2}+u^{2}+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}