Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. u
Tick mark Image

Similar Problems from Web Search

Share

\int 2u^{3}+2u\mathrm{d}u
Use the distributive property to multiply 2u by u^{2}+1.
\int 2u^{3}\mathrm{d}u+\int 2u\mathrm{d}u
Integrate the sum term by term.
2\int u^{3}\mathrm{d}u+2\int u\mathrm{d}u
Factor out the constant in each of the terms.
\frac{u^{4}}{2}+2\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{3}\mathrm{d}u with \frac{u^{4}}{4}. Multiply 2 times \frac{u^{4}}{4}.
\frac{u^{4}}{2}+u^{2}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u\mathrm{d}u with \frac{u^{2}}{2}. Multiply 2 times \frac{u^{2}}{2}.
\frac{u^{4}}{2}+u^{2}+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.