Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. θ
Tick mark Image

Similar Problems from Web Search

Share

2\int \theta \mathrm{d}\theta
Factor out the constant using \int af\left(\theta \right)\mathrm{d}\theta =a\int f\left(\theta \right)\mathrm{d}\theta .
\theta ^{2}
Since \int \theta ^{k}\mathrm{d}\theta =\frac{\theta ^{k+1}}{k+1} for k\neq -1, replace \int \theta \mathrm{d}\theta with \frac{\theta ^{2}}{2}. Multiply 2 times \frac{\theta ^{2}}{2}.
\theta ^{2}+С
If F\left(\theta \right) is an antiderivative of f\left(\theta \right), then the set of all antiderivatives of f\left(\theta \right) is given by F\left(\theta \right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.