Evaluate
182\cos(212528)x+С
Differentiate w.r.t. x
182\cos(212528)
Share
Copied to clipboard
\int 182\cos(-3\times 0\times 7x-4\times 53132)+0\times 9\mathrm{d}x
Do the multiplications.
\int 182\cos(0\times 7x-4\times 53132)+0\times 9\mathrm{d}x
Multiply -3 and 0 to get 0.
\int 182\cos(0x-4\times 53132)+0\times 9\mathrm{d}x
Multiply 0 and 7 to get 0.
\int 182\cos(0-4\times 53132)+0\times 9\mathrm{d}x
Anything times zero gives zero.
\int 182\cos(0-212528)+0\times 9\mathrm{d}x
Multiply 4 and 53132 to get 212528.
\int 182\cos(-212528)+0\times 9\mathrm{d}x
Subtract 212528 from 0 to get -212528.
\int 182\cos(-212528)+0\mathrm{d}x
Multiply 0 and 9 to get 0.
\int 182\cos(-212528)\mathrm{d}x
Anything plus zero gives itself.
182\cos(-212528)x
Find the integral of 182\cos(-212528) using the table of common integrals rule \int a\mathrm{d}x=ax.
182\cos(212528)x
Simplify.
182\cos(212528)x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}