Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int \left(12y^{3}+48y+12\right)\left(y^{2}+4\right)\mathrm{d}y
Use the distributive property to multiply 12 by y^{3}+4y+1.
\int 12y^{5}+96y^{3}+192y+12y^{2}+48\mathrm{d}y
Use the distributive property to multiply 12y^{3}+48y+12 by y^{2}+4 and combine like terms.
\int 12y^{5}\mathrm{d}y+\int 96y^{3}\mathrm{d}y+\int 192y\mathrm{d}y+\int 12y^{2}\mathrm{d}y+\int 48\mathrm{d}y
Integrate the sum term by term.
12\int y^{5}\mathrm{d}y+96\int y^{3}\mathrm{d}y+192\int y\mathrm{d}y+12\int y^{2}\mathrm{d}y+\int 48\mathrm{d}y
Factor out the constant in each of the terms.
2y^{6}+96\int y^{3}\mathrm{d}y+192\int y\mathrm{d}y+12\int y^{2}\mathrm{d}y+\int 48\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{5}\mathrm{d}y with \frac{y^{6}}{6}. Multiply 12 times \frac{y^{6}}{6}.
2y^{6}+24y^{4}+192\int y\mathrm{d}y+12\int y^{2}\mathrm{d}y+\int 48\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{3}\mathrm{d}y with \frac{y^{4}}{4}. Multiply 96 times \frac{y^{4}}{4}.
2y^{6}+24y^{4}+96y^{2}+12\int y^{2}\mathrm{d}y+\int 48\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply 192 times \frac{y^{2}}{2}.
2y^{6}+24y^{4}+96y^{2}+4y^{3}+\int 48\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply 12 times \frac{y^{3}}{3}.
2y^{6}+24y^{4}+96y^{2}+4y^{3}+48y
Find the integral of 48 using the table of common integrals rule \int a\mathrm{d}y=ay.
2y^{6}+24y^{4}+96y^{2}+4y^{3}+48y+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.