Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. s
Tick mark Image

Similar Problems from Web Search

Share

\int 10\sin(s)\mathrm{d}s+\int 7\cos(s)\mathrm{d}s
Integrate the sum term by term.
10\int \sin(s)\mathrm{d}s+7\int \cos(s)\mathrm{d}s
Factor out the constant in each of the terms.
-10\cos(s)+7\int \cos(s)\mathrm{d}s
Use \int \sin(s)\mathrm{d}s=-\cos(s) from the table of common integrals to obtain the result. Multiply 10 times -\cos(s).
-10\cos(s)+7\sin(s)
Use \int \cos(s)\mathrm{d}s=\sin(s) from the table of common integrals to obtain the result.
-10\cos(s)+7\sin(s)+С
If F\left(s\right) is an antiderivative of f\left(s\right), then the set of all antiderivatives of f\left(s\right) is given by F\left(s\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.