Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. m
Tick mark Image

Similar Problems from Web Search

Share

\int -m^{2}\mathrm{d}m+\int 8m^{3}\mathrm{d}m+\int -8m^{5}\mathrm{d}m
Integrate the sum term by term.
-\int m^{2}\mathrm{d}m+8\int m^{3}\mathrm{d}m-8\int m^{5}\mathrm{d}m
Factor out the constant in each of the terms.
-\frac{m^{3}}{3}+8\int m^{3}\mathrm{d}m-8\int m^{5}\mathrm{d}m
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m^{2}\mathrm{d}m with \frac{m^{3}}{3}. Multiply -1 times \frac{m^{3}}{3}.
-\frac{m^{3}}{3}+2m^{4}-8\int m^{5}\mathrm{d}m
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m^{3}\mathrm{d}m with \frac{m^{4}}{4}. Multiply 8 times \frac{m^{4}}{4}.
-\frac{m^{3}}{3}+2m^{4}-\frac{4m^{6}}{3}
Since \int m^{k}\mathrm{d}m=\frac{m^{k+1}}{k+1} for k\neq -1, replace \int m^{5}\mathrm{d}m with \frac{m^{6}}{6}. Multiply -8 times \frac{m^{6}}{6}.
-\frac{m^{3}}{3}+2m^{4}-\frac{4m^{6}}{3}+С
If F\left(m\right) is an antiderivative of f\left(m\right), then the set of all antiderivatives of f\left(m\right) is given by F\left(m\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.