Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{-6yx^{4}}{-x}+2x^{3}y-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Cancel out y in both numerator and denominator.
\int \frac{-6yx^{4}}{-x}+\frac{2x^{3}y\left(-1\right)x}{-x}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{3}y times \frac{-x}{-x}.
\int \frac{-6yx^{4}+2x^{3}y\left(-1\right)x}{-x}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Since \frac{-6yx^{4}}{-x} and \frac{2x^{3}y\left(-1\right)x}{-x} have the same denominator, add them by adding their numerators.
\int \frac{-6yx^{4}-2x^{4}y}{-x}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Do the multiplications in -6yx^{4}+2x^{3}y\left(-1\right)x.
\int \frac{-8yx^{4}}{-x}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Combine like terms in -6yx^{4}-2x^{4}y.
\int \frac{-8yx^{3}}{-1}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Cancel out x in both numerator and denominator.
\int 8yx^{3}-\left(-x\right)y\left(-5\right)x^{2}\mathrm{d}x
Anything divided by -1 gives its opposite.
\int 8yx^{3}-\left(-x^{3}y\left(-5\right)\right)\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\int 8yx^{3}+x^{3}y\left(-5\right)\mathrm{d}x
Multiply -1 and -1 to get 1.
\int 3yx^{3}\mathrm{d}x
Combine 8yx^{3} and x^{3}y\left(-5\right) to get 3yx^{3}.
3y\int x^{3}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
3y\times \frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{3yx^{4}}{4}
Simplify.
\frac{3yx^{4}}{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.