Evaluate
\frac{z^{8}}{8}+\frac{5z^{6}}{2}+\frac{75z^{4}}{4}+\frac{125z^{2}}{2}+С
Differentiate w.r.t. z
z\left(z^{2}+5\right)^{3}
Share
Copied to clipboard
\int \left(\left(z^{2}\right)^{3}+15\left(z^{2}\right)^{2}+75z^{2}+125\right)z\mathrm{d}z
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(z^{2}+5\right)^{3}.
\int \left(z^{6}+15\left(z^{2}\right)^{2}+75z^{2}+125\right)z\mathrm{d}z
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int \left(z^{6}+15z^{4}+75z^{2}+125\right)z\mathrm{d}z
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int z^{7}+15z^{5}+75z^{3}+125z\mathrm{d}z
Use the distributive property to multiply z^{6}+15z^{4}+75z^{2}+125 by z.
\int z^{7}\mathrm{d}z+\int 15z^{5}\mathrm{d}z+\int 75z^{3}\mathrm{d}z+\int 125z\mathrm{d}z
Integrate the sum term by term.
\int z^{7}\mathrm{d}z+15\int z^{5}\mathrm{d}z+75\int z^{3}\mathrm{d}z+125\int z\mathrm{d}z
Factor out the constant in each of the terms.
\frac{z^{8}}{8}+15\int z^{5}\mathrm{d}z+75\int z^{3}\mathrm{d}z+125\int z\mathrm{d}z
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z^{7}\mathrm{d}z with \frac{z^{8}}{8}.
\frac{z^{8}}{8}+\frac{5z^{6}}{2}+75\int z^{3}\mathrm{d}z+125\int z\mathrm{d}z
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z^{5}\mathrm{d}z with \frac{z^{6}}{6}. Multiply 15 times \frac{z^{6}}{6}.
\frac{z^{8}}{8}+\frac{5z^{6}}{2}+\frac{75z^{4}}{4}+125\int z\mathrm{d}z
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z^{3}\mathrm{d}z with \frac{z^{4}}{4}. Multiply 75 times \frac{z^{4}}{4}.
\frac{z^{8}}{8}+\frac{5z^{6}}{2}+\frac{75z^{4}}{4}+\frac{125z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}. Multiply 125 times \frac{z^{2}}{2}.
\frac{125z^{2}}{2}+\frac{75z^{4}}{4}+\frac{5z^{6}}{2}+\frac{z^{8}}{8}
Simplify.
\frac{125z^{2}}{2}+\frac{75z^{4}}{4}+\frac{5z^{6}}{2}+\frac{z^{8}}{8}+С
If F\left(z\right) is an antiderivative of f\left(z\right), then the set of all antiderivatives of f\left(z\right) is given by F\left(z\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}