Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{2}+5x-4x-10-7\left(-10+4\right)\mathrm{d}x
Apply the distributive property by multiplying each term of x-2 by each term of 2x+5.
\int 2x^{2}+x-10-7\left(-10+4\right)\mathrm{d}x
Combine 5x and -4x to get x.
\int 2x^{2}+x-10-7\left(-6\right)\mathrm{d}x
Add -10 and 4 to get -6.
\int 2x^{2}+x-10-\left(-42\right)\mathrm{d}x
Multiply 7 and -6 to get -42.
\int 2x^{2}+x-10+42\mathrm{d}x
The opposite of -42 is 42.
\int 2x^{2}+x+32\mathrm{d}x
Add -10 and 42 to get 32.
\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 32\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 32\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}+\int x\mathrm{d}x+\int 32\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}+\int 32\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}+32x
Find the integral of 32 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}+32x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.