Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(x^{2}-4x+4\right)x\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\int x^{3}-4x^{2}+4x\mathrm{d}x
Use the distributive property to multiply x^{2}-4x+4 by x.
\int x^{3}\mathrm{d}x+\int -4x^{2}\mathrm{d}x+\int 4x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-4\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-4\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{4x^{3}}{3}+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -4 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{4x^{3}}{3}+2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
2x^{2}-\frac{4x^{3}}{3}+\frac{x^{4}}{4}
Simplify.
2x^{2}-\frac{4x^{3}}{3}+\frac{x^{4}}{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.