Evaluate
\frac{x^{5}}{5}+4x+8\sqrt{x}+С
Differentiate w.r.t. x
x^{4}+4+\frac{4}{\sqrt{x}}
Share
Copied to clipboard
\int x^{4}\mathrm{d}x+\int \frac{4}{\sqrt{x}}\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+4\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+4\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+8\sqrt{x}+\int 4\mathrm{d}x
Rewrite \frac{1}{\sqrt{x}} as x^{-\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form. Multiply 4 times 2\sqrt{x}.
\frac{x^{5}}{5}+8\sqrt{x}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{5}}{5}+8\sqrt{x}+4x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}