Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\left(x^{3}\right)^{2}+4x^{3}+4\right)\times 3x^{2}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+2\right)^{2}.
\int \left(x^{6}+4x^{3}+4\right)\times 3x^{2}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int \left(3x^{6}+12x^{3}+12\right)x^{2}\mathrm{d}x
Use the distributive property to multiply x^{6}+4x^{3}+4 by 3.
\int 3x^{8}+12x^{5}+12x^{2}\mathrm{d}x
Use the distributive property to multiply 3x^{6}+12x^{3}+12 by x^{2}.
\int 3x^{8}\mathrm{d}x+\int 12x^{5}\mathrm{d}x+\int 12x^{2}\mathrm{d}x
Integrate the sum term by term.
3\int x^{8}\mathrm{d}x+12\int x^{5}\mathrm{d}x+12\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{9}}{3}+12\int x^{5}\mathrm{d}x+12\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 3 times \frac{x^{9}}{9}.
\frac{x^{9}}{3}+2x^{6}+12\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 12 times \frac{x^{6}}{6}.
\frac{x^{9}}{3}+2x^{6}+4x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 12 times \frac{x^{3}}{3}.
4x^{3}+2x^{6}+\frac{x^{9}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.