Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}\mathrm{d}x+\int \frac{1}{x}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{4}}{4}+\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\ln(|x|)
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\frac{x^{4}}{4}+\ln(|x|)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.