\int ( x ^ { 2 } - 4 y ) d y d x = 1
Solve for d
d=\frac{1}{x\left(С+yx^{2}-2y^{2}\right)}
\left(y\neq 0\text{ and }x\neq 0\text{ and }|x|\neq \frac{\sqrt{8y+\frac{С}{y}}}{2}\right)\text{ or }\left(x\neq 0\text{ and }С_{1}<0\text{ and }y<0\right)\text{ or }\left(x\neq 0\text{ and }С_{2}\geq 0\text{ and }y<\sqrt{С_{3}}\text{ and }y>0\right)\text{ or }\left(С_{4}\neq 0\text{ and }x\neq 0\text{ and }|x|\neq \frac{\sqrt{8y+\frac{С_{5}}{y}}}{2}\right)\text{ or }\left(С_{6}\neq 0\text{ and }x\neq 0\text{ and }y=0\right)\text{ or }\left(x\neq 0\text{ and }y\leq 0\text{ and }y<\sqrt{С_{7}}\text{ and }С_{8}<0\right)\text{ or }\left(x\neq 0\text{ and }y<\sqrt{С_{9}}\text{ and }y\geq 0\text{ and }С_{10}>0\right)\text{ or }\left(x\neq 0\text{ and }y<-\sqrt{С_{11}}\right)
Share
Copied to clipboard
x\left(С+yx^{2}-2y^{2}\right)d=1
The equation is in standard form.
\frac{x\left(С+yx^{2}-2y^{2}\right)d}{x\left(С+yx^{2}-2y^{2}\right)}=\frac{1}{x\left(С+yx^{2}-2y^{2}\right)}
Divide both sides by \left(x^{2}y-2y^{2}+С\right)x.
d=\frac{1}{x\left(С+yx^{2}-2y^{2}\right)}
Dividing by \left(x^{2}y-2y^{2}+С\right)x undoes the multiplication by \left(x^{2}y-2y^{2}+С\right)x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}