Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(2x^{2}\right)^{7}\left(3x^{2}+2x\right)\mathrm{d}x
Combine x^{2} and x^{2} to get 2x^{2}.
\int 2^{7}\left(x^{2}\right)^{7}\left(3x^{2}+2x\right)\mathrm{d}x
Expand \left(2x^{2}\right)^{7}.
\int 2^{7}x^{14}\left(3x^{2}+2x\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 7 to get 14.
\int 128x^{14}\left(3x^{2}+2x\right)\mathrm{d}x
Calculate 2 to the power of 7 and get 128.
\int 384x^{16}+256x^{15}\mathrm{d}x
Use the distributive property to multiply 128x^{14} by 3x^{2}+2x.
\int 384x^{16}\mathrm{d}x+\int 256x^{15}\mathrm{d}x
Integrate the sum term by term.
384\int x^{16}\mathrm{d}x+256\int x^{15}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{384x^{17}}{17}+256\int x^{15}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{16}\mathrm{d}x with \frac{x^{17}}{17}. Multiply 384 times \frac{x^{17}}{17}.
\frac{384x^{17}}{17}+16x^{16}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{15}\mathrm{d}x with \frac{x^{16}}{16}. Multiply 256 times \frac{x^{16}}{16}.
\frac{384x^{17}}{17}+16x^{16}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.