Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(x^{2}\right)^{2}+8x^{2}x+16x^{2}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4x\right)^{2}.
\int x^{4}+8x^{2}x+16x^{2}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int x^{4}+8x^{3}+16x^{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int x^{4}\mathrm{d}x+\int 8x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+2x^{4}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}+2x^{4}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}+2x^{4}+\frac{x^{5}}{5}
Simplify.
\frac{16x^{3}}{3}+2x^{4}+\frac{x^{5}}{5}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.