Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(x+3\right)\left(x^{2}-6x+9\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\int x^{3}-3x^{2}-9x+27\mathrm{d}x
Use the distributive property to multiply x+3 by x^{2}-6x+9 and combine like terms.
\int x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int -9x\mathrm{d}x+\int 27\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x-9\int x\mathrm{d}x+\int 27\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-3\int x^{2}\mathrm{d}x-9\int x\mathrm{d}x+\int 27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-x^{3}-9\int x\mathrm{d}x+\int 27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-x^{3}-\frac{9x^{2}}{2}+\int 27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -9 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-x^{3}-\frac{9x^{2}}{2}+27x
Find the integral of 27 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{9x^{2}}{2}-x^{3}+\frac{x^{4}}{4}+27x
Simplify.
-\frac{9x^{2}}{2}-x^{3}+\frac{x^{4}}{4}+27x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.