Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-2x^{3}-3x^{2}+4x+4\mathrm{d}x
Square x+2-x^{2}.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int 4x\mathrm{d}x+\int 4\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int 4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-3\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-x^{3}+4\int x\mathrm{d}x+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-x^{3}+2x^{2}+\int 4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}-x^{3}+2x^{2}+4x
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}x=ax.
-x^{3}+2x^{2}-\frac{x^{4}}{2}+4x+\frac{x^{5}}{5}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.