Evaluate
\frac{2x^{3}}{3}-\frac{3x^{2}}{2}-5x+С
Differentiate w.r.t. x
\left(2x-5\right)\left(x+1\right)
Share
Copied to clipboard
\int 2x^{2}-5x+2x-5\mathrm{d}x
Apply the distributive property by multiplying each term of x+1 by each term of 2x-5.
\int 2x^{2}-3x-5\mathrm{d}x
Combine -5x and 2x to get -3x.
\int 2x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int -5\mathrm{d}x
Integrate the sum term by term.
2\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{3}}{3}-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 2 times \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-\frac{3x^{2}}{2}+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
\frac{2x^{3}}{3}-\frac{3x^{2}}{2}-5x
Find the integral of -5 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2x^{3}}{3}-\frac{3x^{2}}{2}-5x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}