Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int e^{x}+\frac{4}{x}+5x^{9}+\frac{6}{x^{4}}\times 56x\mathrm{d}x
Multiply 7 and 8 to get 56.
\int e^{x}+\frac{4}{x}+5x^{9}+\frac{6\times 56}{x^{4}}x\mathrm{d}x
Express \frac{6}{x^{4}}\times 56 as a single fraction.
\int e^{x}+\frac{4}{x}+5x^{9}+\frac{6\times 56x}{x^{4}}\mathrm{d}x
Express \frac{6\times 56}{x^{4}}x as a single fraction.
\int e^{x}+\frac{4}{x}+5x^{9}+\frac{6\times 56}{x^{3}}\mathrm{d}x
Cancel out x in both numerator and denominator.
\int e^{x}+\frac{4}{x}+5x^{9}+\frac{336}{x^{3}}\mathrm{d}x
Multiply 6 and 56 to get 336.
\int e^{x}\mathrm{d}x+\int \frac{4}{x}\mathrm{d}x+\int 5x^{9}\mathrm{d}x+\int \frac{336}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
\int e^{x}\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x+5\int x^{9}\mathrm{d}x+336\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant in each of the terms.
e^{x}+4\int \frac{1}{x}\mathrm{d}x+5\int x^{9}\mathrm{d}x+336\int \frac{1}{x^{3}}\mathrm{d}x
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
e^{x}+4\ln(|x|)+5\int x^{9}\mathrm{d}x+336\int \frac{1}{x^{3}}\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
e^{x}+4\ln(|x|)+\frac{x^{10}}{2}+336\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply 5 times \frac{x^{10}}{10}.
e^{x}+4\ln(|x|)+\frac{x^{10}}{2}-\frac{168}{x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}. Multiply 336 times -\frac{1}{2x^{2}}.
e^{x}+4\ln(|x|)+\frac{x^{10}}{2}-\frac{168}{x^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.