Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 32x^{7}+48x^{8}+8x^{9}+12x^{10}\mathrm{d}x
Use the distributive property to multiply 8x+2x^{3} by 4x^{6}+6x^{7}.
\int 32x^{7}\mathrm{d}x+\int 48x^{8}\mathrm{d}x+\int 8x^{9}\mathrm{d}x+\int 12x^{10}\mathrm{d}x
Integrate the sum term by term.
32\int x^{7}\mathrm{d}x+48\int x^{8}\mathrm{d}x+8\int x^{9}\mathrm{d}x+12\int x^{10}\mathrm{d}x
Factor out the constant in each of the terms.
4x^{8}+48\int x^{8}\mathrm{d}x+8\int x^{9}\mathrm{d}x+12\int x^{10}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply 32 times \frac{x^{8}}{8}.
4x^{8}+\frac{16x^{9}}{3}+8\int x^{9}\mathrm{d}x+12\int x^{10}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 48 times \frac{x^{9}}{9}.
4x^{8}+\frac{16x^{9}}{3}+\frac{4x^{10}}{5}+12\int x^{10}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply 8 times \frac{x^{10}}{10}.
4x^{8}+\frac{16x^{9}}{3}+\frac{4x^{10}}{5}+\frac{12x^{11}}{11}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{10}\mathrm{d}x with \frac{x^{11}}{11}. Multiply 12 times \frac{x^{11}}{11}.
4x^{8}+\frac{16x^{9}}{3}+\frac{4x^{10}}{5}+\frac{12x^{11}}{11}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.