Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 6x-6-4x^{2}+16x-12\mathrm{d}x
To find the opposite of 4x^{2}-16x+12, find the opposite of each term.
\int 22x-6-4x^{2}-12\mathrm{d}x
Combine 6x and 16x to get 22x.
\int 22x-18-4x^{2}\mathrm{d}x
Subtract 12 from -6 to get -18.
\int 22x\mathrm{d}x+\int -18\mathrm{d}x+\int -4x^{2}\mathrm{d}x
Integrate the sum term by term.
22\int x\mathrm{d}x+\int -18\mathrm{d}x-4\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
11x^{2}+\int -18\mathrm{d}x-4\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 22 times \frac{x^{2}}{2}.
11x^{2}-18x-4\int x^{2}\mathrm{d}x
Find the integral of -18 using the table of common integrals rule \int a\mathrm{d}x=ax.
11x^{2}-18x-\frac{4x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -4 times \frac{x^{3}}{3}.
11x^{2}-18x-\frac{4x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.