Evaluate
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+64x+С
Differentiate w.r.t. x
\left(15x^{2}+4\right)\left(5x^{3}+4\right)^{2}
Share
Copied to clipboard
\int \left(25\left(x^{3}\right)^{2}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x^{3}+4\right)^{2}.
\int \left(25x^{6}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int 375x^{8}+100x^{6}+600x^{5}+160x^{3}+240x^{2}+64\mathrm{d}x
Use the distributive property to multiply 25x^{6}+40x^{3}+16 by 15x^{2}+4.
\int 375x^{8}\mathrm{d}x+\int 100x^{6}\mathrm{d}x+\int 600x^{5}\mathrm{d}x+\int 160x^{3}\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Integrate the sum term by term.
375\int x^{8}\mathrm{d}x+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Factor out the constant in each of the terms.
\frac{125x^{9}}{3}+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{8}\mathrm{d}x with \frac{x^{9}}{9}. Multiply 375 times \frac{x^{9}}{9}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply 100 times \frac{x^{7}}{7}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 600 times \frac{x^{6}}{6}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 160 times \frac{x^{4}}{4}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+\int 64\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 240 times \frac{x^{3}}{3}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+64x
Find the integral of 64 using the table of common integrals rule \int a\mathrm{d}x=ax.
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}
Simplify.
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}