Solve for C
C=С
x\neq 0
Solve for x
x\neq 0
C=С\text{ and }x\neq 0
Share
Copied to clipboard
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=xx^{4}+1+xC
Multiply both sides of the equation by x.
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
x\int \frac{4x^{3}x^{2}}{x^{2}}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
To add or subtract expressions, expand them to make their denominators the same. Multiply 4x^{3} times \frac{x^{2}}{x^{2}}.
x\int \frac{4x^{3}x^{2}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Since \frac{4x^{3}x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Do the multiplications in 4x^{3}x^{2}-1.
x^{5}+1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}
Subtract x^{5} from both sides.
xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}-1
Subtract 1 from both sides.
xC=Сx
The equation is in standard form.
\frac{xC}{x}=\frac{Сx}{x}
Divide both sides by x.
C=\frac{Сx}{x}
Dividing by x undoes the multiplication by x.
C=С
Divide Сx by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}