Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}-2\int x\mathrm{d}x+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}-x^{2}+\int \frac{1}{\sqrt{x}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
x^{3}-x^{2}+2\sqrt{x}
Rewrite \frac{1}{\sqrt{x}} as x^{-\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form.
x^{3}-x^{2}+2\sqrt{x}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.