Evaluate
\frac{9t^{7}}{7}-t^{6}+\frac{t^{5}}{5}+С
Differentiate w.r.t. t
\left(3t-1\right)^{2}t^{4}
Share
Copied to clipboard
\int 9\left(t^{3}\right)^{2}-6t^{3}t^{2}+\left(t^{2}\right)^{2}\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3t^{3}-t^{2}\right)^{2}.
\int 9t^{6}-6t^{3}t^{2}+\left(t^{2}\right)^{2}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int 9t^{6}-6t^{5}+\left(t^{2}\right)^{2}\mathrm{d}t
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\int 9t^{6}-6t^{5}+t^{4}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 9t^{6}\mathrm{d}t+\int -6t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Integrate the sum term by term.
9\int t^{6}\mathrm{d}t-6\int t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{9t^{7}}{7}-6\int t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{6}\mathrm{d}t with \frac{t^{7}}{7}. Multiply 9 times \frac{t^{7}}{7}.
\frac{9t^{7}}{7}-t^{6}+\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply -6 times \frac{t^{6}}{6}.
\frac{9t^{7}}{7}-t^{6}+\frac{t^{5}}{5}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}.
\frac{t^{5}}{5}-t^{6}+\frac{9t^{7}}{7}
Simplify.
\frac{t^{5}}{5}-t^{6}+\frac{9t^{7}}{7}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}