Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int 9\left(t^{3}\right)^{2}-6t^{3}t^{2}+\left(t^{2}\right)^{2}\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3t^{3}-t^{2}\right)^{2}.
\int 9t^{6}-6t^{3}t^{2}+\left(t^{2}\right)^{2}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int 9t^{6}-6t^{5}+\left(t^{2}\right)^{2}\mathrm{d}t
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\int 9t^{6}-6t^{5}+t^{4}\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 9t^{6}\mathrm{d}t+\int -6t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Integrate the sum term by term.
9\int t^{6}\mathrm{d}t-6\int t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{9t^{7}}{7}-6\int t^{5}\mathrm{d}t+\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{6}\mathrm{d}t with \frac{t^{7}}{7}. Multiply 9 times \frac{t^{7}}{7}.
\frac{9t^{7}}{7}-t^{6}+\int t^{4}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply -6 times \frac{t^{6}}{6}.
\frac{9t^{7}}{7}-t^{6}+\frac{t^{5}}{5}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}.
\frac{t^{5}}{5}-t^{6}+\frac{9t^{7}}{7}
Simplify.
\frac{t^{5}}{5}-t^{6}+\frac{9t^{7}}{7}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.