Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 27-27x^{2}+9\left(x^{2}\right)^{2}-\left(x^{2}\right)^{3}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(3-x^{2}\right)^{3}.
\int 27-27x^{2}+9x^{4}-\left(x^{2}\right)^{3}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 27-27x^{2}+9x^{4}-x^{6}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int 27\mathrm{d}x+\int -27x^{2}\mathrm{d}x+\int 9x^{4}\mathrm{d}x+\int -x^{6}\mathrm{d}x
Integrate the sum term by term.
\int 27\mathrm{d}x-27\int x^{2}\mathrm{d}x+9\int x^{4}\mathrm{d}x-\int x^{6}\mathrm{d}x
Factor out the constant in each of the terms.
27x-27\int x^{2}\mathrm{d}x+9\int x^{4}\mathrm{d}x-\int x^{6}\mathrm{d}x
Find the integral of 27 using the table of common integrals rule \int a\mathrm{d}x=ax.
27x-9x^{3}+9\int x^{4}\mathrm{d}x-\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -27 times \frac{x^{3}}{3}.
27x-9x^{3}+\frac{9x^{5}}{5}-\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 9 times \frac{x^{5}}{5}.
27x-9x^{3}+\frac{9x^{5}}{5}-\frac{x^{7}}{7}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -1 times \frac{x^{7}}{7}.
-\frac{x^{7}}{7}+\frac{9x^{5}}{5}-9x^{3}+27x
Simplify.
-\frac{x^{7}}{7}+\frac{9x^{5}}{5}-9x^{3}+27x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.