Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(2x-3\right)\left(x^{2}-4x+4\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\int 2x^{3}-11x^{2}+20x-12\mathrm{d}x
Use the distributive property to multiply 2x-3 by x^{2}-4x+4 and combine like terms.
\int 2x^{3}\mathrm{d}x+\int -11x^{2}\mathrm{d}x+\int 20x\mathrm{d}x+\int -12\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x-11\int x^{2}\mathrm{d}x+20\int x\mathrm{d}x+\int -12\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}-11\int x^{2}\mathrm{d}x+20\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{11x^{3}}{3}+20\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -11 times \frac{x^{3}}{3}.
\frac{x^{4}}{2}-\frac{11x^{3}}{3}+10x^{2}+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 20 times \frac{x^{2}}{2}.
\frac{x^{4}}{2}-\frac{11x^{3}}{3}+10x^{2}-12x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
10x^{2}-\frac{11x^{3}}{3}+\frac{x^{4}}{2}-12x
Simplify.
10x^{2}-\frac{11x^{3}}{3}+\frac{x^{4}}{2}-12x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.