Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 6x^{3}+10x^{2}-3x-5\mathrm{d}x
Use the distributive property to multiply 2x^{2}-1 by 3x+5.
\int 6x^{3}\mathrm{d}x+\int 10x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int -5\mathrm{d}x
Integrate the sum term by term.
6\int x^{3}\mathrm{d}x+10\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{2}+10\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 6 times \frac{x^{4}}{4}.
\frac{3x^{4}}{2}+\frac{10x^{3}}{3}-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 10 times \frac{x^{3}}{3}.
\frac{3x^{4}}{2}+\frac{10x^{3}}{3}-\frac{3x^{2}}{2}+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
\frac{3x^{4}}{2}+\frac{10x^{3}}{3}-\frac{3x^{2}}{2}-5x
Find the integral of -5 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3x^{4}}{2}+\frac{10x^{3}}{3}-\frac{3x^{2}}{2}-5x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.