Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int 4\left(t^{2}\right)^{2}-4t^{2}+1\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2t^{2}-1\right)^{2}.
\int 4t^{4}-4t^{2}+1\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 4t^{4}\mathrm{d}t+\int -4t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Integrate the sum term by term.
4\int t^{4}\mathrm{d}t-4\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Factor out the constant in each of the terms.
\frac{4t^{5}}{5}-4\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply 4 times \frac{t^{5}}{5}.
\frac{4t^{5}}{5}-\frac{4t^{3}}{3}+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -4 times \frac{t^{3}}{3}.
\frac{4t^{5}}{5}-\frac{4t^{3}}{3}+t
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}t=at.
t-\frac{4t^{3}}{3}+\frac{4t^{5}}{5}
Simplify.
t-\frac{4t^{3}}{3}+\frac{4t^{5}}{5}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.