Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Share

\int 2\mathrm{d}y+\int -6\sqrt{y}\mathrm{d}y
Integrate the sum term by term.
\int 2\mathrm{d}y-6\int \sqrt{y}\mathrm{d}y
Factor out the constant in each of the terms.
2y-6\int \sqrt{y}\mathrm{d}y
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}y=ay.
2y-4y^{\frac{3}{2}}
Rewrite \sqrt{y} as y^{\frac{1}{2}}. Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{\frac{1}{2}}\mathrm{d}y with \frac{y^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply -6 times \frac{2y^{\frac{3}{2}}}{3}.
2y-4y^{\frac{3}{2}}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.