Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2\sqrt{x}-\frac{2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\mathrm{d}x
Rationalize the denominator of \frac{2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\int 2\sqrt{x}-\frac{2\sqrt{2}}{2}\mathrm{d}x
The square of \sqrt{2} is 2.
\int 2\sqrt{x}-\sqrt{2}\mathrm{d}x
Cancel out 2 and 2.
\int 2\sqrt{x}\mathrm{d}x+\int -\sqrt{2}\mathrm{d}x
Integrate the sum term by term.
2\int \sqrt{x}\mathrm{d}x-\int \sqrt{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{\frac{3}{2}}}{3}-\int \sqrt{2}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 2 times \frac{2x^{\frac{3}{2}}}{3}.
\frac{4x^{\frac{3}{2}}}{3}-\sqrt{2}x
Find the integral of \sqrt{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4x^{\frac{3}{2}}}{3}-\sqrt{2}x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.